CHAPTER 6 IDEATION AND DESIGN PRINCIPLES

Once you have your design principles, you can use them as a measuring
stick against the concepts you've generated to see which ones best fit. Hope-
fully several ideas will work within the guidelines, or could be tinkered
with to fit.

But design principles can also be used from this point in the process for-
ward to help make design decisions. When there are multiple options to
choose from (“Should we ask users first, or just do it for them?”), the design

principles can sometimes help make the correct decision clear.

Design principles can sometimes outlast the specific product itself, or even
be extended across lines of products to give them all a similar grounding.

Summary

Brainstorming can be mysterious. Frequently an idea will come to you
when you are not in a brainstorming session. Ideas seem to have a life of
their own, but they can sometimes be coaxed into existence, and that’s what

you hope ideation will do.

The design principles you create are a way—granted, a subjective way—of
measuring your ideas for value and feasibility. Of course, the only way to
really tell if an idea is a good one is to play with it, test it out, and refine it.
That is the topic of the next chapter.

For Further Reading
Six Thinking Hats, Edward de Bono

A Technique for Producing Ideas, James Webb Young

Thinkertoys: A Handbook of Creative-Thinking Techniques, Michael Michalko

The Seeds of Innovation: Cultivating the Synergy That Fosters New Ideas,
Elaine Dundon

\

|
|

128

STRATEGY

&,
S
/)

RESEARCH

2, ANALYSIS

/&/ IDEATION
\///

PRINCIPLES

PROTOTYPE/DEVELOPMENT

(L / \
S
J OBSERVATIONS \\\']

CHAPTER7 REFINEMENT

Having a concept, no matter how brilliant, is not enough for
a product. Concepts are relatively easy to come by; it is the
execution of those concepts that matters. And execution is
all about defining the details of the concept, fleshing it out
until it works in a functionally- and aesthetically-pleasing
way. Execution means refining the concept in order to work

on the details.

Details are the small parts of the design where designers
earn their paychecks. They provide moments of efficiency
and delight for users, and are also where designers earn the
respect of the developers, businesspeople, and manufactur-
\ ers. Details often get overlooked in just concept projects.
\\\’] Constraints also are somehow less solid in the world of con-

cepting than they are once you start to figure out how the

y A product actually works.

Constraints

It’s at this point in the process where constraints really rear
their ugly head. Hopefully, via stakeholder interviews and
design research (and experience), you're aware of a number

of constraints by now:

Time. How much time do you have to finish the project? When does
the product need to launch/ship?

Money. What's the budget for finishing the project? What's the price
point or the business model of the product? .
Technology. What platform is the solution going to be made on?
What systems.are or need to be in place for this to work? Can you
have the technology you need in the given time and budget?
Business needs. How will this meet the business success metrics?
What organizational support is there for this product?

User needs. What does the user need to accomplish? How will this be
better than any other solution? Does the solution have to be accessible
to those with disabilities?

Context. Are there physical limitations of size or weight? Where will

the product be used, and how does that affectit?

~ THE LAWS AND PRINCIPLES OF INTERACTION DESIGN

129

Tools. What kind of tools (software, manufacturing) will be used to
build and maintain the product?

Teams. What kind of team do you have to build this? What are their
skills? Realistically, what can you collectively accomplish in the
time given?

You. What skills do you have? What are your weaknesses, and how
can they be overcome?

Constraints end up defining the product more than one cares to admit.
The best designers are those who can juggle the most constraints. “Design
depends largely on constraints,” noted Charles Eames. The trick is to figure
out which constraints are impassible barriers and which can be moved or
changed, given enough effort.

All projects, no matter what their constraints, should follow certain general
principles and fundamentals of interaction design.

The Laws and Principles of Interaction Design

Interaction design, being a new field, doesn’t have very many hard and fast
rules, or “laws,” to speak of. In a sense, interaction designers are still figur-
ing out many of the basic principles of the work they do. However, there is
a handful of laws that interaction designers may use from time to time, as
well as basic principles that underlie all interaction design work. These laws
and principles should always guide the work, not dictate it.

Direct and Indirect Manipulation

Objects can be manipulated in two ways: directly and indirectly. Although
technically digital objects can be manipulated only indirectly (you can’t touch
something that’s made of bits and bytes, after all), direct and indirect manip-

ulation represent two ways of thinking about how to work with objects.

Direct manipulation is a term coined by University of Maryland professor
Ben Shneiderman in the early 1980s. It refers to the process in which, by
selecting a digital object with a finger or with a mouse or with some other
extension of the hand, we can then do something to the object: move it,

turn it, drag it to the trash, change its color, and so on. We can mimic an

CHAPTER7 REFINEMENT

ure 7.1

e design of this
e latch provides
ual affordances
licating how it
ould be used.

action that we might perform on a similar object in the physical world. For
example, we can scale an object by dragging a corner of it as though we
were stretching it. Direct manipulation, because it more closely maps to our
physical experiences, is supposedly more easily learned and used, especially

for manipulating 3-D objects in digital space.

Of course, we also directly manipulate physical objects all the time, by
pushing buttons, turning dials, flipping switches, and so on, which can
cause either mechanical or digital effects. Through sensors, the behavior of
objects can be affected by movement, such as an MP3 player with an accel-

erometer going into shuffle mode by being shaken.

In indirect manipulation, we use a command or menu or gesture in space
or voice command that isn’t directly a part of the digital object to alter that
object. Choosing the Select All command in a menu and pressing the Delete
key on the keyboard are examples of indirect manipulation. In the past,
especially during the years before the Macintosh popularized the GUI,

nearly all computer commands were indirect.

Interaction designers need to decide how digital objects in their products

can be manipulated: directly, indirectly, or (more and more frequently) in

both ways.

Affordances

How something manifests gives us cues as to how it
behaves and how we should interact with it (Figure 7.1).
The size, shape, and even weight of mobile devices let
us know that they should be carried with us. The sleek
black or silver look of digital video recorders like TiVo
devices tell us that they are pieces of electronic equip-

ment and belong alongside stereos and televisions.

Appearance is the major source of what cognitive psy-
chologist James Gibson, in 1966, called affordances.
Gibson explored the concept more fully in his 1979 book The Ecological
Approach to Visual Perception, but it wasn’t until Don Norman’s seminal
book The Psychology of Everyday Things, in 1988, that the term spread into
design. An affordance is a property, or set of properties, that provides some

THE LAWS AND PRINCIPLES OF INTERACTION DESIGN

131

indication of how to interact with an object or feature. A chair has an affor-
dance of sitting because of its shape. A button has an affordance of pushing
because of its shape and the way it moves (or seemingly moves). The empty
space in a cup is an affordance that tells us we could fill the cup with liquid.
An affordance (or, technically, a perceived affordance) is contextual and cul-
tural. You know you can push a button because you've pushed one before. On
the other hand, a person who has never seen chopsticks would be puzzled
about what to do with them.

Interaction design, especially in the refinement phase, can be thought of
in part as providing affordances so that the features and functionality of a
product can be discovered and correctly used.

Feedback and Feedforward

Feedback, as the term is commonly used in interaction design, is some indi-
cation that something has happened. Feedback should occur like crooked
voting: early and often. Every action by a person who engages with the
product or service, no matter how slightly, should be accompanied by some
acknowledgment of the action: Moving the mouse should move the cursor.
Pressing a key on your mobile phone should display a number.

To proceed otherwise is to court errors, some of them potentially serious.
Frequently, if there is no immediate or obvious feedback, users will repeat
the action they just did—for instance, pushing a button twice. Needless to
say, this can cause problems, such as accidentally buying an item twice or
transferring money multiple times. If the button is connected to dangerous
machinery, it could result in injury or death. People need feedback.

Designing the appropriate feedback is the designer’s task. The designer has
to determine how quickly the product or service will respond and in what
manner. Should the response be something simple such as the appearance
of a letter on a screen (the feedback in word processing for pressing a key),
or should it be a complex indicator such as a pattern of blinking LED lights
on a device that monitors your stock portfolio?

There is little more annoying than talking to someone who doesn’t respond.
The same holds true for “conversations” with products and services. We
need to know that the product “heard” what we told it to do and that it is

{

132

CHAPTER7 REFINEMENT

COURTESY ORBITZ

Y Cha-Ching!

Baok your
L Flight + Hotel]
B opether and Save $174° 4

The Orbitz searching
screen won't make
the wait shorter for
search results, but

it will make it seem
shorter because of its
responsiveness.

working on that task. We also want to know what the product or service is
doing. A spinning circle or a tiny hourglass icon doesn’t give users much

transparency into what is happening.

If a response to an action is going to take sig-
nificant time (more than 1 second, which,
believe it or not, can seem like a long wait),
a good design provides some mechanism that
lets the user know the system has heard the
request and is doing something (Figure 7.2).
This doesn’t shorten the waiting time, but it
makes it seem shorter. Excellent examples of
such a mechanism are the indicators that tell
you how long software installation will take.
These indicators also assure the user that the
process hasn’t stalled.

The responsiveness of digital products, deter-
mined by the time between an action and the
product’s response (also called latency), can

be characterized by these four basic levels:

Immediate. When a product or service responds in 0.1 second or less,
the user considers the response immediate and continues the task
with no perceived interruption. When you push a key on your key-

board and a letter instantly appears, that is an immediate response.

Stammer. Ifaproduct or service takes 0.1 second to 1 second to respond,
users will notice a delay. If such a delay is not frequently repeated, users
will overlook it. Repeated, it will make the product or service feel slug-
gish. For instance, if you press a key on your keyboard and it takes a
second for the letter to appear on your screen, you'll notice the delay. If
this happens with every key press, you will quickly become frustrated

with your word processor.

Interruption. After a second of no response, users will feel that the
task they were doing was interrupted and their focus will shift from
the task at hand to the product or service itself. If you click a Submit
button to execute a stock trade and nothing happens for several sec-
onds, you will worry about the trade and wonder if the Web site is

broken. Multiple interruptions can lead to a disruption.

THE LAWS AND PRINCIPLES OF INTERACTION DESIGN

133

Disruption. If a delay of more than 10 seconds occurs, users will
consider the task at hand completely disrupted. Feedback such as a
progress bar or a timer that indicates how long a process will take
will allay users’ concerns and also allow the user to decide whether to
continue the process. Marquees in the London Underground indicat-
ing when the next trains will arrive are excellent examples of respon-
siveness that addresses this level of delay.

Related to feedback and also to affordance is what designer Tom Djajadin-
ingrat calls feedforward: knowing what will happen before you perform
an action. Feedforward can be a straightforward message (“Pushing this
button will submit your order”) or simple cues such as hypertext links with

descriptive names instead of “Here.”

Feedforward allows users to perform an action with confidence because it
gives them an idea of what will happen next. It is harder to design into
products and services than feedback, but designers should keep an eye out

for opportunities to use it.

Mental Model

Mental model is the term for a user’s internal understanding of how a system
or object works, which may or may not reflect how the thing actually does
work. The best mental models allow for a deep understanding of the thing,
minus the complexities involved in making the thing work. For instance,
most people have a mental model of how a car behaves, even though they

don’t know how a combustion engine works.

Mental models are usually constructed by users from the cues provided by
the designer in the form of affordances, feedback, and feedforward. Indeed,
using those very things, designers can manipulate the user’s mental model
significantly, hiding or exposing the product’s inner workings. For exam-
ple, a label on a car’s steering wheel that reads, “Blow horn before starting
car” would certainly change how you think about the functionality of the
car, and especially the horn. Or imagine if when you turned the car on, a
voice instructed the driver about fuel going into the engine. Sure, you would
know more about the car, but it wouldn’t make your driving any better.

134

CHAPTER7 REFINEMENT

Standards

There is a perennial debate among interaction designers about how closely
to follow interface standards and when to break them. Do all applications
have to work in a similar way? Should Ctrl-C or Command-C always copy
whatever is selected? Does every menu bar have to have the same head-
ings (File, Edit, View, and so on)? Both Microsoft and Apple have standards
guidelines online that are religiously followed by many. Usability gurus
such as Jakob Nielsen promote and swear by them.

There are certainly good reasons for having and using standards. Over many
years, designers have trained users to expect certain items to be located in
certain places (for example, the company logo goes at the top left of a Web
site) and certain features to work in a particular way (for example, pressing
Ctrl-Z undoes the last command). A design that ignores these conventions
means that your users will have to learn something different, something
that doesn’t work like all their other applications work. A variation from the

standard can cause frustration and annoyance.

So why ever violate or alter standards? Alan Cooper solved this dilemma
with his axiom: Obey standards unless there is a truly superior alternative.
That is, ignore standards only when the new way of doing a task is mark-
edly, significantly better than what the users have previously used. Feel
free to propose a new method of cutting and pasting, but it had better be
unequivocally better than what users are accustomed to now. New stan-
dards don’t have to be radical departures from the old standards, but even a
slight change should be made with care because it subverts the user’s expec-

tations of how a product should work.

Fitts's Law

Published in 1954 by psychologist Paul Fitts, Fitts’s (pronounced “fitzez”)
Law simply states that the time it takes to move from a starting position to
a final target is determined by two things: the distance to the target and the
size of the target. Fitts’s Law models the act of pointing, both with a finger
and with a device like a mouse. The larger the target, the faster it can be
pointed to. Likewise, the closer the target, the faster it can be pointed to.

Fitts’s Law has three main implications for interaction designers. Since the
size of the target matters, clickable objects like buttons need to be a reasonable

THE LAWS AND PRINCIPLES OF INTERACTION DESIGN

size. This is especially true for touchscreens or on screens at a distance such
as a television. As anyone who has tried to click a tiny icon will attest, the
smaller the object, the harder it is to select. Second, the edges and corners of
screens are excellent places to position things like menu bars and buttons.
Edges and corners are huge targets because they basically have infinite height
or width. You can’t overshoot them with the mouse; your mouse will stop on
the edge of the screen no matter how far you move it, and thus will land on
top of the button or menu. The third major implication of Fitts's Law is that
controls that appear next to what the user is working on (such as a menu that
appears next to an object when the user right-clicks the mouse) can usually be
opened more quickly than pull-down menus or toolbars, which require travel

to other parts of the screen.

Hick's Law

Hick’s Law, or the Hick-Hlyman Law, says that the time it takes for users to
make decisions is determined by the number of possible choices they have.
People don’t consider a group of possible choices one by one. Instead, they
subdivide the choices into categories, eliminating about half of the remain-
ing choices with each step in the decision. Thus, Hick’s Law claims that a
user will more quickly make choices from one menu of 10 items than from

two menus of 5 items each.

A controversial implication of this law is that it is better for products to give
users many choices simultaneously instead of organizing the choices into
hierarchical groups, as in drop-down menus. If followed to an extreme, this
approach could create some truly frightening designs. Imagine if a content-
rich site like Yahoo or Amazon presented all of its links on the home page,

or if your mobile phone displayed all of its features on its main screen.

Hick’s Law also states that the time it takes to make a decision is affected by
two factors: familiarity with the choices, such as from repeated use, and the

format of the choices—are they sounds or words, videos, or buttons?

The Magical Number Seven

Hick’s Law seems to run counter to George Miller’s Magical Number
Seven rule. In 1956, Miller, a Princeton University psychology professor,
determined that the human mind is best able to remember information in

BALLLLLLAR

135

I
|
I
|
I
i
)
(

136

CHAPTER7 REFINEMENT

chunks of seven items, “plus or minus two.”" After five to nine pieces of
information (for instance, navigation labels or a list of features or a set of
numbers), the human mind starts making errors. It seems that we have dif-
ficulty keeping more than that amount of information in our short-term
memory at any given time.

Some designers have taken the Magical Number Seven rule to an extreme,
making sure that there are never any more than seven items on a screen at
any given time. This is a bit excessive, because Miller was specifically talk-
ing about bits of information that humans have to remember or visualize
in short-term memory. When those bits of information are displayed on a
screen, users don’t have to keep them in their short-term memory; they can
always refer to them.

But designers should take care not to design a product that causes “cogni-
tive overload” by ignoring the Magical Number Seven rule. For example,
designers should never create a device that forces users to remember unfa-
miliar items across screens or pages. Imagine if you had to type a new phone
number on three separate screens of your mobile phone. You’d scramble to
do so before the number faded from your short-term memory.

Tesler's Law of the Conservation of Complexity

Larry Tesler, one of the pioneers of interaction design (see the interview with
him in Chapter 6), coined Tesler’s Law of the Conservation of Complexity,
which states that some complexity is inherent in every process. There is a
point beyond which you can’t simplify the process any further; you can only
move the inherent complexity from one place to another.

For example, for an e-mail message, two elements are required: your e-mail
address and the address of the person to whom you are sending the mail. If
either of these items is missing, the e-mail can’t be sent, and your e-mail cli-
ent will tell you so. It’s a necessary complexity. But some of that burden has
likely been shifted to your e-mail client. You don’t typically have to enter your
e-mail address every time you send e-mail. The e-mail program handles that
task for you. Likewise, the e-mail client probably also helps you by remember-
ing e-mail addresses to which you've sent mail in the past, so that you don’t

1 See "The magical number seven, plus or minus two: Some limits on our capacity for processing
information” Psychological Review, 63, 81-97

THE LAWS AND PRINCIPLES OF INTERACTION DESIGN

137

have to remember them and type them in fully each time. The complexity
isn’t gone, though—instead, some of it has been shifted to the software.

Interaction designers need to be aware of Tesler’s Law for two reasons. First,
designers need to acknowledge that all processes have elements that can-
not be made simpler, no matter how much they tinker with them. Second,
designers need to look for reasonable places to move this complexity in the
products they make. It doesn’t make sense for users to type their e-mail
addresses in every e-mail they send when the software can handle this task.
The burden of complexity needs to be shared as much as possible by the

products interaction designers make.

The Poka-Yoke Principle

Legendary Japanese industrial engineer and quality guru Shigeo Shingo
created the Poka-Yoke Principle in 1961 while working for Toyota. Poka-
Yoke roughly translates in English to mistake proofing: avoiding (yokeru)
inadvertent errors (poka). Designers use Poka-Yoke when they put con-
straints on products to prevent errors, forcing users to adjust their behavior

and correctly execute an operation.

—— o

Simple examples of the applica- A = ~

tion of Poka-Yoke are the cords
(USB, FireWire, power, and oth-
ers) that fit into electronic devices
only in a particular way and in a
particular place, and thus prevent
someone from, say, plugging the
power cord into the hole where
the headphones go (Figure 7.3). In this way, Poka-Yoke ensures that proper
conditions exist before a process begins, preventing problems from occur-
ring in the first place. Poka-Yoke can be implemented in lots of forms: by
signs (Do not touch the third rail!), procedures (Step 1: Unplug toaster),
humans (police directing traffic around an accident), or any other entity
that prevents incorrect execution of a process step. Where prevention is not
possible, Poka-Yoke mandates that problems be stopped as early as possible

in the process.

Poka-Yoke often manifests itself in interaction design via the disabling of
functionality (or the navigation, for example, the menu item or the icon)

An illustration of the
Poka-Yoke Principle.
The USB cord will fit
into only a particular
slot on this laptop

computer.

138

CHAPTER7 REFINEMENT

when conditions for its use have not yet been met. When doing this, it’s
also a good practice when possible to show via tool tip or other means what
conditions will enable the functionality.

Errors

In an ideal situation, no system should ever present an error message to a
user unless the user has done everything right but the system itself cannot
respond correctly. “Errors” are often a sign of poor design or engineering,
or of not applying the Poka-Yoke Principle.

When an error occurs, you should always provide a way to fix the error, or
otherwise provide information about why the error occurred.

Frameworks

Every product needs a framework: an actual or metaphysical structure that
defines the product and integrates the content and functionality into a uni-
fied whole. Without it, your product will seem disjointed, a collection of
random stuff that users will struggle to make sense of.

There are three main kinds of frameworks that can be applied to a product:
metaphor, postures, and structure.

Metaphor

Metaphor can be a way for users to understand abstract (digital) concepts.
The most famous example, of course, is the desktop metaphor, which helped
unify the graphical user interface (GUI) we’ve used for the last 30 years.
Metaphor can suggest everything from how a product should function to
how its visual or physical form is shaped.

Of course, metaphor can be abused. Witness Microsoft’s infamous Bob
(Figure 7.4), which imagined the operating system as a physical house. And
metaphor can also be inaccurate—you can’t do everything on your virtual
desktop that you can on your physical one, after all. But it can be a powerful
frameworking tool.

FRAMEWORKS

139

Figure 7.4

run amok.

Tl N Bob Howsehold B etter
' \ i’ S

COURTESY MICROSOFT

Dashboards and Control Panels

A very common metaphor is that of a dashboard or control panel (Figure
7.5). Many of the applications, Web sites, consumer electronics, and appli-
ances use this metaphor, lifted directly from physical objects, as a way of

clustering and grouping both system information and controls.

Dashboard o b ot e I
Partner Recruitment Dashboard tes for tha Page

< Go To Dashboard Uist
View Dashboard [Pariner Recrument Dashboard -]

Partner Recruitment Statistics

35 ol 41132007 122 PIA An example of a
dashboard-style

artner Recruitment By Reglon Pariner Registration Aging Report

of Partner Registrations in Process' 9

Company Account Record Count
Program Contracts Requiring Signatures: 92 AbbottDistibution 3 |ayout,
Tod 0 Acme Partner Co 1
eQi! 01 a)
of New Partner Registrations Today Aiies Resagers e 4
Fartner Recruitment Campaign 2 Aiitiow I 1
Responses.

Partner Reg Interest by Program Recruitment Segmentation Analysis
artne! Reg Iniorest WY FIo9e e

,rwvc;:t 50 partners by end of year

— A

Record Count

FY 07 Performance Summary

COURTESY SALESFORCE.COM

Microsoft's Bob is an
example of metaphor

140

CHAPTER7 REFINEMENT

Postures

Over the last 30 years, several common types of structures have emerged
for the design of software. Alan Cooper calls these postures? and there are
four principal ones:

Sovereign. For applications users will need to use often, intensively,
and for long periods of time, a sovereign posture might make sense.
Sovereign applications such as Microsoft Word are complex, large,
and take up a large portion of the screen when in use. Sovereign
applications have many features and lots of work or viewing space,
and typically the application window is broken up into several panes
(for example, one pane for an overview, one for working, one for a

detail view).

Transient. For applications that are temporary and users need only
briefly, such as installers and widgets like calculators, transient pos-
ture is appropriate. Transient applications use only a small amount of
screen real estate and have few, simple controls that are clearly labeled.

Daemonic. Applications that mostly run in the background, such as
Growl or virus detectors, often utilize the daemonic posture. Unless
absolutely necessary, these applications shouldn’t intrude on the
user’s attention. The controls for them are mostly limited to setup

and configuration through a simple control panel.

Parasitic. An application, such as the Windows Start bar or Tweet-
Deck, that supplements another application or service can have a
parasitic posture. Parasitic posture applications are present for long
periods, but are generally smaller than sovereign applications and
have limited functionality.

Structure

Even if you choose a posture such as sovereign, you will likely have to deter-
mine, at least roughly, what overall form and layout it will take, such as
the layout of panes in the application. And if there is particular hardware
involved, such as on a mobile device or piece of consumer electronics, the
interplay between hardware and software has to be considered as well.

2 For more details on postures, see About Face 3.0

FRAMEWORKS

141

Functional Cartography

If your project combines hardware and software, you need to determine
where the functionality “lives.” This is the functional cartography. Once
you have a list of functionality and an understanding of their context of
use, you can go about determining whether the controls for that function-
ality should be analog (physical buttons, sliders, dials, and so on), digital
(onscreen controls), or some hybrid of the two (for example, soft keys). Soft
keys are physical buttons alongside screen labels, and the context changes
the functionality (and accompanying label) of the button.

How the functional cartography is decided depends on a number of factors:

Context. When and where will the functionality be used? Does it
need to be accessed rapidly? In the dark or unseen (in a pocket or
behind the device)? With the screen idle or oft?

Priority. How important is this piece of functionality? Does it always

need to be available? Is it used very often?

Cost. How much does it cost (in terms of money, resources, weight,
and power consumption) to have a screen at all? Or an additional

physical control?
Ergonomics. For the target users, what is the easiest physically to use?

Aesthetics. Is another physical control going to ruin the form? Is the

screen needed to have these controls going to be too large?

Tangibility. How tactile does the feature need to be? Does it need to
have the presence (and resulting affordance) of a physical control, or
does a touchscreen (perhaps with haptic feedback) work as well?

The resulting functional cartography can be documented in a variety of
ways. Often a simple table will suffice, with columns for Physical and Digi-
tal, and the functionality in rows below, showing in which category they
will be placed. Another way to document (if you are farther along in the
design process) is an illustration or sketch of the physical form, noting the

functionality that resides on- and off-screen.

Once a functional cartography is done, it becomes easier to sketch, model,
and prototype the device, as the location of functional pieces is now better
known. A functional cartography need not be set in stone, however. Dur-
ing prototyping or modeling, it might become clear that a physical control

is necessary, or vice versa. But a functional cartography will at least give a

142

CHAPTER7 REFINEMENT

DOCUMENTATION AND METHODS OF REFINEMENT

143

Sigure 7

A simple site map.

starting place to distribute features and discuss the interplay between form
and function.

Site/Screen/State Maps

One way of determining structure organically is to figure out how the pieces of
functionality flow into one another and how the user navigates between them.
This is often done after a task flow (see later in this chapter) has been made.

On the Web, this is sometimes accomplished via a site map (Figure 7.6),
as different pieces of functionality live in different physical areas of the
site, accessed by hyperlinks. This is also true of other products like mobile
phones where, for example, Web browsing is often in a separate space from

dialing the phone.
Home Page
What is » Download Browse Create a
Soundflavor? Player Playlists Playlist
i A '/ 4
About Siren Search/Browse
Results
\ 4
[}
z
Register < 2‘{
Z
e
o
=
2
\4 2
>
2
i =
Users | Playlists =
o
<t o
C——
L
L

The organization and labeling of features, information, and content is the
discipline of information architecture. Information architecture draws
upon library science techniques to structure information spaces in ways

that make finding, navigating between, and understanding content easy.

But increasingly, even on the Web, functionality involves not going to another
area, but simply shifting state. Practically every product involving interaction
design changes over time. A state can be thought of as a paused moment of
a time-based system. A state captures a particular moment in an interaction.
States to pay particular attention to are initiation, activation, and updates.®
Initiation is the default state immediately before an action begins. What does
the screen (if any) look like, and what does the user do to change that (for
example, rolling over a button, clicking a link)? Activation is what happens
during an action. For example, what happens while the user is dragging an
item across the screen or when a button is pushed? Updates are the state after
the user has finished an action, how the product has changed.

Modes are a general condition created by the user or the system that allows
for different functionality (and/or different states) to be accessed. For
example, in some applications, you can only affect content when you go
into editing mode. Modes are controversial in that they add complexity to
any system and make mental models more challenging. They also create a
lot more conditional situations that need to be documented and accounted
for. In addition to pages or screens, you can create a flow between modes

and states as well.

Mapping out pages, screens, states, and modes can create an overview that
helps unify the product for you. You still need to pay attention to the over-
all impression that youre giving your users via affordances and feedback.
Users need to understand the product as a whole before becoming familiar
with the details.

Documentation and Methods of Refinement

Product concepts are refined mostly by thinking through them, which
means either by simply starting to build them (see Chapter 8) or by put-
ting ideas on paper, whiteboard, or screen and seeing where they lead. The

3 See Plans and Situated Actions: The Problem of Human-Machine Communication by Lucy Suchman

144

CHAPTER7 REFINEMENT

documents generated by this process are typically called documentation,
but that implies detailing something that is completed. These are working
documents that should evolve over time; documentation is an unfortunate

name for them.

Designers should create exactly as much documentation as it takes to exe-
cute the project well, and no more. If the designer’s team responds well to
use cases, then by all means the designer should produce them. If a cli-
ent couldn’t care less about them, the designer shouldn’t do one unless the
designer or the team finds it helpful.

If a document doesn’t communicate anything useful, it is worthless—less
than worthless, in fact, because it squanders the designer’s time. Each docu-

ment produced should take the project one step closer to completion.

Scenarios

Scenarios provide a fast and effective way to imagine the design concepts in

use. In a sense, scenarios are prototypes built of words.

Scenarios are, at their heart, simply stories—stories about what it will be
like to use the product or service once it has been made. The protagonists
of these stories are the personas (see chapter 5). Using a scenario, designers
can place their personas into context and further bring them to life. Indeed,
scenarios are one of the factors that make personas worth having. Running
through the same scenario using different personas is an excellent tech-

nique for uncovering what needs to be included in the final product.

Consider an e-commerce Web site, for example. One persona is Juan, a very
focused shopper who always knows exactly what he wants. Another per-
sona is Angela, who likes to look around and compare items. If the designer
imagines them in a scenario in which they are shopping for an item, the
scenario starring Juan will have him using search tools, and the scenario

starring Angela will have her using browsing tools.

One common scenario that works well for almost every product or ser-
vice is one that imagines first-time use. What happens when the personas
encounter the product or service for the first time? How do they know what
to do and how to use the product or service? What does it feel like to them?
Running each persona through a first-time use scenario can reveal how to
tailor the final design to appeal to and work for each persona.

DOCUMENTATION AND METHODS OF REFINEMENT

145

A picture can be worth a thousand words, but a few words can also be worth
quite a few pictures. Consider this example from a scenario for an online

grocery delivery service:

Sarah logs onto her BigGrocery account. She sees her order from last week
and decides to use it again for this week’s order. She removes a few items by
dragging them off her BigGroceryList. Her total cost adjusts appropriately.
She has all the groceries she wants now, so she clicks the Deliver button. Her
saved credit card account is charged, and her confirmation page tells her to

expect the groceries in about an hour.

This scenario took only a few minutes to write, but it would have taken
hours to storyboard, days to wireframe, and weeks to prototype. Using sce-

narios, designers can sketch with words.

Sketches and Models

Of course, designers can sketch
with images as well as words
(Figure 7.7). As stated earlier,
the designer’s best tool has been
and continues to be the physical
drawing surface (paper, white-
board) and the physical drawing
instrument (pencil, pen, crayon,

marker). Nothing digital thus far

- has been able to match the flexibil-

T,“.‘

ity, speed, and ease of sketching on a piece of paper or whiteboard. Space is
just one reason—even the largest monitor cannot compete with wall-sized

whiteboards or sheets of paper fastened together.

Another form of sketching is modeling, which is useful for exploring physi-
cal forms. Models can be made of a variety of materials, from clay to card-
board to Styrofoam. Large blocks of Styrofoam can even be used to model
physical spaces. Even crude blocks of wood, like those carried around by
Jeff Hawkins to test the size, shape, and weight of the original PalmPilot,*

4 See, for instance, “Jeff Hawkins: The Man Who Almost Single-Handedly Revived
The Handheld Computer Industry” by Shawn Barnett in Pen Computing magazine.
Online at www.pencomputing.com/palm/Pen33/hawkins1.html

Before opening up
any software, spend
some quality time
sketching with pens,
pencils, and paper.
Sketches have the
added bonus of
looking unfinished,
so no one is inhibited
from discussing their
flaws.

146

CHAPTER7 REFINEMENT

This storyboard
was done with
photography, but

many storyboards are

drawn.

can be models. Models, like sketches, can be rapidly put together, to give
rough approximations of physical objects and environments.

Sketching and modeling should be done throughout the design process, of
course, but they are most helpful as visualizations of concepts and ideas

that are still being formed to help to clarify and communicate those ideas

and concepts.

Sketches and models are, by their nature, informal, and they can be easily
changed. Viewers feel free to comment on them for just this very reason.
This is a good thing, and no designer should feel overly attached to them.

Storyboards
Once a scenario and sketches have been created to show what a product or
service could be like, designers can create a storyboard (Figure 7.8) to help

illustrate the product or service in use.

After reading the p

The page is replaced by
the local weather forecast. Dave draws an X across
it and the

Dave wriles the word
Weather and circles it.

disappears.

Storyboarding is a technique drawn from filmmaking and advertising. Com-
bining a narrative with accompanying images, designers can powerfully tell a

story about a product or service, displaying its features in a context.

The images on a storyboard can be illustrations or staged photos created
expressly for the storyboard. Generic or stock images are not recommended,
as they will come off as stilted and likely won’t be specific enough to match
the scenario). Storyboards consist of these image panels, with accompany-

ing text that can be drawn directly from the scenarios.

DOCUMENTATION AND METHODS OF REFINEMENT

Storyboards can also be used in conjunction with a wireframe (discussed
later in this chapter) to illustrate the details of a complicated process or func-
tion. Using a storyboard, a designer can show key moments of an action.
For example, a complicated drag-and-drop procedure could be shown with
panels illustrating the first moment that the user picks up an object, what
happens during dragging, and what happens when the object is dropped.

Task Flows

Once you know what tasks have to be designed for (possibly after doing a
task analysis as detailed in Chapter 5), putting those tasks into a sensible
order, or flow, is important. Task flows (Figure 7.9) show the logical con-
nections that will be built into wireframes (discussed later in this chapter).
You can't, for instance, use the Back button on your Web browser to go
back to a previous page until you've been to more than one page. You can’t
connect a phone call until you've entered a number. You can’t change your
preferences until you’ve registered. And so on.

Says “Make
e-mail”

Says, “Who do
you want to send

itto?"
Says
“Iname]”

E-mail arrives at
the computer

Does com-
puter have
et access),

Yes
E-mail rule
setup?

Yes

Nothing happens

Says, “E-mail nol|
sent”

Says, “I don't
recognize that

Does e-mail
fit rule?

Says, “You've
got maill”

Says, “Subject?®

ﬂ Reads e-mail in
order of arrival

Says “Reply”
or “Reply All"

Adds to address

book
Says, “Added”

Stops e-mail
reading

A task flow for a voice
interface.

148

CHAPTER7 REFINEMENT

Putting tasks into flows helps the designer begin to see the product take
shape. Task flows can suggest page order on a Web site or in a wizard. Since
task flows show where users will have to perform certain actions, they help
clarify the implementation of controls (see later in the chapter). And where
decisions have to be made, flows show where menus and information (or

affordances) will have to be included.

Use Cases

Programmers have used use cases in the design of software for years. Indeed,
it is this tradition that gives use cases some of their power: developers are
very accustomed to seeing them and will likely understand them immedi-
ately, as will the business people who have over the years had to use them to
communicate with programmers. Other design documents, while gaining

recognition and acceptance, are simply not as well established.

Use cases are a means of roughing out the functionality of a product or
service. A use case attempts to explain in plain language what a certain

function does and why.

Uses cases also describe whom the function involves. Cases begin by iden-
tifying a set of potential actors. These actors can be based on the personas,
but they can even be simpler than that. For example, “the user” can be one
of these actors. Another of these actors is typically “the system.” The system
is the generic actor for any automatic or computing process. It is typically
these processes that programmers have been interested in defining, but use
cases don’t need to be limited to describing events involving the system.

Use cases have the following form:

A title. This should be descriptive, since it will be referenced often,
both in documents and conversation. For example, a use case from
an e-mail project might be called “Send an E-mail.”

The actors. Who is performing the function? In the e-mail example,
the actors are the user and the system.

The purpose. What is this use case meant to accomplish and why? For
the function sending an e-mail, the purpose would be something like
this: “An actor wants to send a message to someone electronically.”
The initial condition. What is happening when the use case starts?
In our example, it is simply that the e-mail client is open.

DOCUMENTATION AND METHODS OF REFINEMENT

The terminal condition. What will happen once the use case ends?
In the e-mail example, the condition is again simple: an e-mail has
been sent.

The primary steps. Discrete moments in this piece of functionality.
In the e-mail example, these would be the steps:

L Actor opens up a new mail window.

2. Actor enters the e-mail address of the recipient or selects it
from the address book.

3. Actor enters a subject.

4. Actor enters message.

5. Actor sends mail via some method (for example, a button click).

6. The system checks to make sure the mail has a recipient
address.

7. The system closes the mail window.

8. The system sends the mail.
9. The system puts a copy of the mail into the sent mail folder.

Alternatives. Alternatives are other use cases that may consider the
same or similar functionality. In the e-mail example, Reply to Sender
and Forward Mail might be use case alternatives.

Other use cases used. Frequently, one piece of functionality is built
upon another. List those for reference. The e-mail example includes
a few functions that could have their own use cases: Open an E-mail
Window, Select an Address from the Address Book, and Confirm
Recipient Address might all be separate use cases.

Use cases can be broad (Send an E-mail) or very detailed (Confirm Recipi-
ent Address). Use cases can also be very time consuming to create, and a
complicated system could potentially have dozens, if not hundreds, of use
cases. Use cases are, however, an excellent tool for breaking down tasks and
showing what the system will have to support.

Mood Boards

Moodboards (Figure 7.10) are a means for the designer to explore the emo-
tional landscape of a product. Using images, words, colors, typography, and
any other means available, the designer crafts a collage that attempts to

NLALLLL

150

CHAPTER7 REFINEMENT

Figure 7.10

Mood boards are one
way for designers

to consider the
emotional content of
products.

convey what the final design will feel like. Images and words can be found
in magazines and newspapers or online image galleries, or can be created
by the designer. Some designers take and use their own photographs for

mood boards.

elocation right
on your desktop,
S

PRODUCTIVITY

Traditionally, mood boards were made on large sheets of poster board (thus,
the name). The advantage of this approach was that the result could be
posted on a wall to be glanced at frequently for inspiration. But this doesn’t
need to be so. Mood boards can be created digitally: as animations, mov-
ies, screen savers, or projections on a wall. The advantage of digital mood
boards is that they can include movement and sounds—something tradi-

tional paper mood boards obviously cannot do.

The important point is that whatever form the mood board takes, it should
reflect on an emotional level the feeling the designer is striving for in the
product or service. The mood board shouldn’t be challenging intellectually;

like a good poem or piece of art, it should affect viewers viscerally.

DOCUMENTATION AND METHODS OF REFINEMENT

Wireframes

Wireframes (Figure 7.11) are a set of documents that show structure, infor-
mation hierarchy, controls, and content. They have their roots in architec-
tural drawings and network schematics (in fact, they are sometimes called
schematics). Next to prototypes, wireframes are usually the most important
document that interaction designers produce when working on products.
(Services don’t typically have wireframes. Instead they have service blue-
prints; see later in this chapter.) Wireframes are a means of documenting
the features of a product, as well as the technical and business logic that
went into those features, with only a veneer of visual design (mostly just the
functionality’s controls). They are the blueprints of a product. Developers,
industrial and visual designers, copywriters, and business people use wire-
frames to understand and build the product in a thoughtful way without
being distracted by the visual or physical form.

Wireframes are tricky documents to create because of the multiple audi-
ences that read and use them. Clients want to see how the design meets their
business goals. Developers want to see how the product works (and doesn’t
work—for instance, what happens when an error occurs) so they can know
what they need to code. Visual or industrial designers want to see what
visual or physical elements will need to be designed, such as the number
and type of buttons. Copywriters want to see what they need to write: help
text, manuals, headlines, and so on. And designers want to be able to refer
to them in the future to remember details such as why there are two buttons
instead of one for a certain feature. Accommodating the needs of these vari-
ous audiences in one document is the designer’s task.

In short, the wireframe is an inventory of all the elements that must be

accounted for on a particular screen, Web page, or state.

Wireframes typically have three main areas: the wireframe itself, the
accompanying annotations, and information about the wireframe (wire-
frame metadata).

151

—— S —

The Wireframe Itself
b

The wireframe itself is a detailed view of a particular part of a product.
A wireframe for a

Wireframes can show anything from an overview of a product—the form of
desktop music player.

- < g
= ° @ @ g = =
= E=S P = 03 = ®©
2 g < Z 837 £ = - . X X . .
;E 2 3 '3 % 2 §§; i a PDA, for instance—to detailed documentation of a particular functional-
Sk g 5 £ A2 2 =€ 2 i " S A "
g€ &8 5 g z&8 = 32 © ity, such as the volume control on a music editing application.
=3 a e 5§ 2 2 =] =
s & - 3 §£ 8 i S
55 3 E 8 =% £ g2 3 Wireframes should rough out the form of a product. Form is shaped by
23 E g 3 e= @ g3 g
a = g 9 % 25 = > .
gz = & ¢ % 3 3% ¢ £ three factors: the content, the controls necessary to discover and engage
68 £ 3§ £ 22 & £ & i . — . _
56 8 & E g2 € - 2 with the functionality, and the means of accessing or navigating to those
§2 2 ¢ 2 ¥ s By 3 1
8 £ . & sz 2 g§ g two things. Thus, the wireframe needs to include indicators of content and
8= el £ 5 kW, 8w Eig D =
ef s ¢ 5 5% 3F %% T p @ functions as well as the elements for navigating them (buttons, switches,
E S = 2 & gsg 38 &% g s §
82 : % 5 Ee% g g.;% %i g = e a3 menus, keystrokes, and so on).
R o < = o ol c < e 2 =<
e3,. % 53 gR8ct 22 B 3 % 2 £8¢ Content is a deliberately vague term that includes text, movies, images,
1= 5 = 8= o a o T 229
852 & 2t 29 E2y o= g7 & £33 S35® . : . . .
' c8% 55 3% % 235 %8 82 E 252 §§E§ icons, animations, and more. Content strategy is the planning for the cre-
| e o o 5 Fao 02 G =5 £ 5373 2855
| o5 g 29 ©dg £E B < 28 e a3 o 5 % .
’ g2 £2 5 sZ 58§ 2 g &3 §§: 526 3858 . ation, publication, and governance of the content that goes into a product.’
2o ©g 88 E£F PEo X e €5 g %5823 . " ? .
‘ °3 g £t ‘é% g8 883 8 5% = & 2% 5226f Ideally, any content you are working with will be known before you begin
\ S§8 5T £= bo 535 "5 s, €5 g8@ 588832 ; ; ;
_ wEZ o8 $g 2. 58z 5T 28 TR fEE 38033 the wireframing process, or at least the specific types and components as
Ex Ex £ 54 £8 i o <] 1 2= £ 95
| £8Z 28 Z§ 8% @asfE 2 =2 I& 0 Susse
=82 = 5g3E5
[SR-E=Re)

determined by the content strategy.
|

If you don’t know the content or have pieces of representative content, you

will have to represent it on wireframes by leaving placeholders (usually
\ boxes with an X through them) for images/video and greeked or dummy
7 text. This dummy text is often the one used by typesetters since the 1500s:
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tem-

por incididunt ut labore et dolore magna aliqua. It’s become somewhat of a
tradition to use it in wireframes.

Album Name

Note: See next page for
center controls and states.
Track Name

Track Name.

Functionality consists of the controls—the buttons, knobs, sliders, dials,
input boxes, and so on—of a feature, as well as the accompanying labels
and feedback to those controls. A simple Web site form, for example, usu-
ally consists of labels (“Enter your name”), text boxes (where you enter your
name, for instance), radio buttons (“Male? Female?”), check boxes (“Check
here to join our mailing list!”), a Submit button, a Cancel button, and error

messages (“You forgot to enter your name!”). All of these need to be docu-
mented on the wireframe.

PLAYER IN DEFAULT OPEN STATE

PLAYER IN COLLAPSED STATE

13
2
3
5}
£
5
3
z

Track Name.

Alist

COURTESY SOUNDFLAVOR, INC

5 For more about content strategy, see "The Discipline of Content Strategy” by Kristina Halvorson

at www.alistapart.com/articles/thedisciplineofcontentstrategy/ or her book Content Strategy for
the Web

154

CHAPTER7 REFINEMENT

There also needs to be a way to find and use the content and functionality: navi-
gation. Navigation can consist of any number of methods, such as hyperlinks,
simple drop-down menus, toolbars with widgets, and complex manipulations
in physical space. On some mobile phones, for instance, pushing the cursor
key down while pressing the star key locks the phone. On a digital camera, to
view the content (the pictures that were taken), the user may have to change the
mode of the camera and then use buttons to flip through the photos.

All these components should appear on the wireframe in a way that shows
their general placement and importance. Note that the same wireframe can
be used to design many different forms; wireframes can be interpreted in
different ways by the visual or industrial designer. What is important is that
all the items (content placeholders, functionality, and navigation) needed to

create the final product be on the wireframes.

For many products, such as those with small screens or touchscreens, it can
make sense to do wireframes drawn to the exact scale of the screen, so that
problems do not arise when moving into visual design, prototyping, and

production.

Anything on a wireframe that is not obvious or labeled should have a cor-

responding annotation.

Annotations

Annotations are brief notes that describe nonobvious items on the wire-
frame. They explain the wireframe when the designer isn’t there to do so.
When developers or clients want to know the reason for a button, they
should be able to read the annotation and understand not just what the
button does, but also why the button is there. Documenting “why” is a
challenge, since annotations should be brief. But there is a vast difference
between an annotation that says, “This button stops the process” and one
that says, “This button stops the process so users don’t have to wait for long
periods.” In the second version, the reader immediately knows the reason
for the button. If a change occurs in the process (“The process now takes
only a second”), it’s easier to see how to adjust the design appropriately.

Here is a partial list of wireframe objects that should be annotated:

Controls. (See later in this chapter for a list of controls.) What happens
when a button is pushed or a dial is turned or a hyperlink is clicked.

DOCUMENTATION AND METHODS OF REFINEMENT

Conditional items. Objects that change based on context. For exam-
ple, in many application menus, certain items are dimmed depend-
ing on what the user is doing at the time.

Constraints. Anything with a business, legal, logical, or technical
constraint (for example, the longest possible length of a password or

the legal reason that minors cannot view certain content).

Anything that, due to space, could not be shown in the wireframe

itself (for example, every item on a long drop-down menu).

Wireframe Metadata
Each wireframe should have information about that wireframe—that is,

wireframe metadata. Every wireframe should include the following:

The designer’s name.
The date the wireframe was made or changed.
The version number.

What has changed since the last version. Clients like this; it shows
that the designer is actively addressing issues that have arisen during
the project.

Related documentation. Any related documentation (ideally with
a specific page number) that is relevant to this wireframe: business
requirements, technical specifications, use cases, and so on. If there
are questions about the wireframe (“Did we really say that the robot
wouldn’t swim?”), appropriate documents can be referenced.

Unresolved issues. Are there problems with the wireframe that still
need to be decided?

A place for general notes. This is the place for the designer to express
any final reservations about the product—especially the constraints
that affected it. I have occasionally noted where business or technical
constraints have had a negative impact on a product and should be
addressed. In this way, designers can either argue for changes upon
presenting the wireframes, or, if the clients or developers are reluc-
tant to change the constraints, bring them up in the future when

complaints arise or another version is planned.

155

156 CHAPTER7 REFINEMENT - DOCUMENTATION AND METHODS OF REFINEMENT 157

A piece of a service
blueprint, part of
the MAYA Carnegie
Library of Pittsburgh
project. Service
blueprints show

not only discrete
moments in the
service, but also how
those moments flow
together in a service
string.

Service Blueprint

Much as wireframes are key documents for digital products, service blue-
prints (Figure 7.12) are critical documents for services (which most prod-
ucts are part of anyway). Service blueprints present two major elements:

service moments and the service string.

.

When the user locates his/her goal

| <ol
As the user searches for his/he
b |

e ’
| heieptay tho avaitaility of (ccaven i tovs) and.

WoRK

Service Moments
Every service is composed of a set of discrete moments that can be designed.

For example, a car wash service has (at least) the following service moments:

Customer finds the car wash.

Customer enters the car wash.

Customer chooses what to have done (washing, waxing, and so on).
Customer pays.

Car moves into the car wash.

Car is washed.

COURTESY MAYA

Car is dried.
Interior of the car is cleaned.

Customer leaves the car wash.

Each of these moments can be designed, right down to how the nozzles
spray water onto the car. The service blueprint should include all of these
moments and present designs for each one. And since there can be multiple
paths through a service, there can be multiple designs for each moment. In
the car wash scenario, perhaps there are multiple ways of finding the car

wash: signs, advertisements, a barker on the street, fliers, and so on.

Here, the list of touchpoints (see chapter 5) can come into play. Which
touchpoint is or could be used during each service moment? For each ser-
vice moment, the touchpoints should be designed. In our car wash example,
for instance, the customer paying probably has at least two touchpoints: a
sign listing the washing services available and their costs, and some sort
of machine or human attendant who takes the customer’s money. All of
these elements—what the sign says and how it says it, how the machine
operates (Does it accept credit cards? How does it make change?), what the
attendant says and does—can be designed. A major part of the service blue-
prints should be the brainstormed ideas for each touchpoint at each service
moment. Each service moment should have a concept attached to it, such as
the sketches in Figure 7.12 showing a possible check-out kiosk and a book-

mark for related library information.

Ideally, each moment should have a sketch or photograph or other render-

ing of the design, similar to single storyboard frames.

For each service moment, the service blueprint should show what service ele-
ments are affected: the environment, objects, process, and people involved.
Designers should especially look for service moments that can deliver high
value for a low cost. Sometimes small, low-cost changes or additions to a
service can quickly provide high value to users. For instance, some airlines
found that passengers want a drink as soon as they board. But because other
passengers are still boarding and in the aisle, flight attendants cannot offer
drink service at that time. The solution was to put a cooler with water bot-

tles at the front of the plane, so that passengers, if they want, can get a drink

as they board—a low-cost, high-value solution.

158

CHAPTER7 REFINEMENT

Service String

The second component of a service blueprint is the service string. The ser-
vice string shows the big idea for the service in written and visual form,
usually in the form of storyboards. Designers create service strings by put-
ting concepts for various service moments together to form a scenario, or
string, of events that provide a pathway through the service.

The service string demonstrates in a vivid way what the pathways through
the service will be and provides a comprehensive, big-picture view of the
new service. Viewers can see how customers order, pay for, and receive the
service, and how employees provide the service. For example, a service
string for the earlier car wash example would show in a single scenario cus-
tomers seeing the new signs, customers using the new machine to pay for
the car wash, the special washing service, the attendants who hand-dry the
cars, and the new vacuum for cleaning out the cars after they are washed.

Controls

Most applications and devices that interaction designers currently design
have some sort of visible controls to manipulate the features of the product—
a dial to control volume on a stereo, for example, or a slider to select a date
range. (The major exceptions are voice and gestural interactions, discussed
later in this chapter.) Controls provide both the affordances needed to under-
stand what the product is capable of, and the power to realize that capability.

This section describes many of the basic controls that interaction designers
can use as a palette. Almost all of these controls have their own standard
feedback mechanisms (a switch moves and stays in its new position, for
instance) that interaction designers should consider:

Switch. A toggle switch is a very simple
control. It moves from one setting (“on”
to another (“off”) and stays there until
changed. ’

CONTROLS

159

Button. Buttons are the interaction designer’s best friend. Once you
begin to look for them, it’s apparent that buttons are everywhere, all
over our interfaces. In a word processing program, there are about 30
buttons visible at any given time. A mobile phone may have about 40
buttons: the number keys for dialing and a keyboard. A button is, at
base, a switch that is pressed or clicked to activate it. The button can
stay pressed (a toggle button), requiring another press to reset it (like
most on/off buttons), or it can reset itself automatically (like keys on
a keyboard). Buttons can be used for a wide variety of actions: from
changing modes (from writing text to drawing, say) to moving an item
or a cursor via arrow keys. Buttons can take many forms, from tiny
icons to physical squares on a floor that can be stepped on. Buttons,

however, are good only for simple actions.

Radio button. Radio buttons enable users to choose from (often pre-
set) items from a set. Typically, these are used to constrain selections,
when only one answer is allowed (“What color hair do you have?”
Black, Blonde, Red, Brown).

Dial. Dials provide more control than buttons, allowing the user to
select a setting along a continuum (such as the amount of heat on a
stove’s burner) or to choose between different settings or modes (such
as the mode for taking pictures and the mode for viewing them on a
digital camera. Dials can move freely, or simply turn from an estab-
lished point to other established points on a wheel. These points are
called detents. Some dials, like those often found on clothes driers,
can be pushed in and pulled out, performing an action (such as turn-

ing on or off) that can vary based on the dial’s rotation.

Latch. A latch opens an otherwise tightly closed area. Latches are
useful for keeping some areas or items hidden or safe until needed.
They are good to use when a button or drop-down menu might be
too easy to click or open. For example, latches are frequently used on
handheld devices to keep the battery compartment safe.

& Low Pass
(" High Pass
" Band Pass

160 CHAPTER7 REFINEMENT CONTROLS 161
—— S

Slider. Sliders, like dials (although rshtamsice Joystick. A joystick is a physical device typically used in digital gam-

40

linear instead of round), are used [| ing or in other applications that require rapid movement and inten-

for subtle control of a feature, ghtamupanddown sive manipulation of remote physical or digital objects. Joysticks can
95

often to control output (such as [L] move in any direction or can be constrained to move only left to right

speaker volume) or the amount of ight am back andforsard or only up and down.

data displayed (such as the num- | I Trackball. A trackball is a physical device for manipulating a cursor

ber of houses on an interactive or other digital or physical objects. Trackballs are typically in a sta-

map). Sliders with more than one tionary base, but the ball itself moves in any direction. A computer

handle can be used to set a range mouse is often a trackball in a case.

within a range.

| Handle. A handle is simply a protruding part of an object that allows

it to be moved or, in some cases, resized. Handles on the frames of
—= most digital windows allow the windows to be moved around the

screen or resized.

Physical-Only Controls
Some common controls are found only in the physical world and not on

screens (although they can certainly manipulate objects on a screen).

Jog dial. A jog dial is a type of
dial that can be manipulated
with a single finger, usually a
thumb. It can be dial-like, or it
can be a pad of buttons, typi-
cally used on small devices for

moving a cursor or moving

through menus. Jog dials are
somewhat difficult to control,
especially for young children
and the elderly.

5-way. A 5-way is a combination button and cursor. It generally moves
a cursor on a screen in four directions (up/down, left/right) and has a

button in the center in order to select what has been navigated to.

COURTESY PALM

162

CHAPTER7 REFINEMENT

Bill DeRouchey on Frameworks and Controls

Bill DeRouchey is a Senior Interaction Designer at Ziba Design. Bill has
over 15 years of experience as a writer, information architect, product
manager, coder, and interaction designer. He has designed a wide vari-
ety of products, from handheld satellite radios and medical devices to
community Web sites, interactive spaces, and product architectures.

How do you go about choosing a structure or framework for your designs?

Most often, the directions that | explore are largely bounded by the physical constraints at
the beginning of the client engagement. Many clients already have specific components
selected for manufacturing before engaging with them, so | have to treat those as givens,
specific display dimensions and resolutions being the most common example. When you're
given a 160x128 pixel space to work within, that tends to inform your structure quite a bit.

Beyond that, my designs tend to follow a pattern of reminiscence. A new medical monitor
needs to behave like clinicians are used to them behaving. New satellite radios need to convey
reminiscent qualities of “radio” so that people have a basis from which they approach the
device. It's all about giving people a head start for understanding how to interact with the new
product in front of them. This allows it to better fit into their lives as seamlessly as possible.

You've written a lot about the history of the button. Why is that important?

Interaction design existed as an activity decades before it was explicitly named as one.
Industrial designers applied knobs, switches, and buttons to their products, and determined
how they would be used by consumers. So these products created a rich history of people
interacting with technology long before computers entered our daily lives. These first decades
of products paved the way and formed our expectations of interacting with products.

This is where the button gets interesting. Consider that our main concern as interaction
designers today is how we interact with products. In the early days, the question was why
we should interact with products at all? Convenience, luxury, efficiency and visions of the
leisurely future were all used as aspirational triggers to buy blenders, washers, radios, and

more. And all of this aspiration was communicated via imagery of fingers pushing buttons.

CONTROLS

163

Bill DeRouchey on Frameworks and Controls (continued)

The phrase “push-button” itself meant easy, simple, even-you-can-use-this product. That's a
lot of social burden placed on a single Ul widget, which is why [love this story.

What should interaction designers know about controls?

Physical controls have strong metaphors and history attached to them. Knobs and sliders
typically indicate that you're looking for something vague along a spectrum: the right volume
or temperature setting. Buttons and switches typically indicate a choice is being made. Turn
the lights on. Start the microwave. Controls usually do only one thing.

Accordingly, one of the biggest challenges of controls is that space, size, and cost limit you
for how many features are important enough to warrant their own physical controls. Do you
really need to adjust bass levels that often, or do you bury that feature in another control
somehow? Like all design, it's a delicate dance to determine this hierarchy, and the best way
to solve it is to put prototypes in front of other people.

What are the most important things to remember when laying out controls?

Laying controls requires a strong sense of hierarchy, zoning, and priority. Control panels typi-
cally focus on a tight set of tasks, with one hero task in that set. In air conditioners, changing
temperature is more important than adjusting schedules. In radios, adjusting volume is the
hero task. These controls should be larger, offset, or otherwise designed to have the highest
priority. It should be clear to people what is the single most important thing to do. Determine

your hero task.

A common mistake is designing all the controls with an overly uniform look and feel. It may
look clean to have 12 different buttons with uniform shape and color lined up into a grid, but
that approach offers no quick visual appraisal to determine what control does what. In these
situations, the labels become more important, creating a secondary problem.

164

CHAPTER7 REFINEMENT

I»]

~[[«1

Digital-Only Controls

While many controls are found in both the physical, analog world and the
digital one, some controls are only found on screens. These digital controls
have grown from the original graphical user interface (GUI) vocabulary
that was invented at Xerox PARC in the 1970s, reinvented in the 1980s in
the Macintosh and PC operating systems, and added to and expanded by
Web conventions in the 1990s:

Check box. A check box enables users to select items from a short list.

¥ Use automatic configuration script

Twist. Twists turn up or down, either revealing or hiding content or

amenu in a panel.

¥ aboutjpg
b [build
¥ buttons.gif
B | - export

* lcon.gif
p | netscape

Scroll bar. Scroll bars enable users to move content within a particu-
lar window or panel. Scroll bars can be vertical or horizontal. Scroll
bars themselves can be manipulated via the cursor or buttons (for
instance, by using arrow keys).

Drop-down menu. Drop-down menus allow designers to cluster navi-
gation, functionality, or content together without having to display it
all at once. Drop-down menus can be displayed by rolling over them,
or they can be opened with a click. They can retract after a selection has

been made or the cursor rolls off them, though not necessarily.

Eﬂ;r Edit View Insert Format Tools Table Wi

0 wew... Ctrl+h

2 Open... crl+o
Close

Save Ctrl+5

Save As,..

[_Tg Save as Web Page...

NON-TRADITIONAL INPUTS

Multiple-selection list (or list box). Multiple-selection lists enable

users to select multiple items in a list.

Text box. Text boxes enable users to enter numbers, letters, or sym-
bols. They can be as small as (and constrained to) a single character

or as large as the whole screen.

File hame: [

Spin box. Spin boxes are text boxes with additional controls that
enable users to manipulate what is inside the text box without having
to type a value. They are good for suggesting values in what otherwise

might be an ambiguous text box.

The combination of one (and usually more) controls plus the system response
is called a widget. Widgets are the building blocks of any application or
device. An MP3 player, for instance, is made of widgets: one for controlling
volume, one for controlling the playing of music files, one for organizing
files, one for exporting files, and so on. In each case, the user uses controls
to perform an action, and the system responds. All applications and devices

are made up of widgets.

Non-traditional Inputs

We are arriving at a time when keyboards, mice, and styluses aren’t the
only—and possibly not even the primary—way we interact with the digital
world. With the dawn of ubiquitous computing, interactive environments,
and sensor-enabled devices (see Chapter 9), people will engage with many
different sorts of objects that have microprocessors and sensors built into

them, from rooms to appliances to bicycles.

The controls for these faceless interfaces are the human body: our voices,

our movements, and simply our presence.

165

bread B y
butter O

frogs

cheese {4

wine A

Test | 1—1 %

Ref riiug

166

CHAPTER7 REFINEMENT

COURTESY KERRY BODINE

COURTESY CANESTA AND KICKER STUDIO
= AR 1

The author screams
at Kelly Dobson's
Blendie, a voice-
controlled blender, to

get it to frappé.

Figure 7.14

This gestural
entertainment center
uses a camera from
Canesta to detect
gestures in space that
control the television.

Voice

Widespread implementation of voice-controlled systems has been on the
horizon for at least a decade now. For now, voice-controlled interfaces are
most prevalent (naturally) on phone systems and mobile phones. For exam-
ple, people call their banks and perform transactions or dial their mobile
phones with just their voices. Voice commands typically control limited
functionality, and the device typically has to be ready to receive voice com-
mands, either because it only functions via voice commands (as with auto-
mated phone systems and some voice-controlled devices—see Figure 7.13),
or because it has been prepared to receive voice commands, as with mobile

phones that allow voice-dialing.

Gestures

To most computers and devices, people consist of two things: hands and
eyes. The rest of the human body is ignored. But as our devices gain more
awareness of the movement of the human body through sensors such as
cameras, the better able they will be to respond to the
complete human body, including gestures. Devices like
the Wii and the iPhone with their built-in accelerom-
eters allow for all manner of new ways of controlling our
devices via movements in space. See Figure 7.14.

Designers need to be especially aware of several issues

= TR when designing gestural interfaces:

Physiology and kinesiology. Designers have to know how humans
move and what the limitations are for that movement. For example,
holding an arm out and making gestures can be quickly tiring—a

condition known as “gorilla arm.”

Presence and instruction. Since there might be no visible interface—
for example, consider the hands-free paper towel dispenser in many
public restrooms—Iletting users know a gestural device is there and
how to use it needs to be addressed.

Avoiding “false positives.” Since human beings make gestures all
the time in the course of just moving around, designing and then
detecting deliberate gestures can be challenging.

FOR FURTHER READING

167

Matching gesture to task. Without standard controls, figuring out
the best motion to trigger an action is important. Simple gestures
should be matched to simple tasks.

Presence

Some systems respond simply to a person’s presence. Many interactive

>

games and installations such as Daniel Rozin’s “Wooden Mirror” (Figure

7.15) respond to a body’s being near their sensors.

There are many design decisions to be made with presence-activated sys-
tems. Consider a room with sensors and environmental controls, for exam-
ple. Does the system respond immediately when someone enters the room,
turning on lights and climate-control systems, or does it pause for a few

moments, in case someone was just passing through?

In addition, sometimes users may not want to be known to be present. Users
may not want their activities and Jocation known for any number of rea-
sons, including personal safety and simple privacy. Designers will have
to determine how and when a user can become “invisible” to presence-

activated systems.

Summary

Refinement of design concepts is about making smart, deliberate choices
about how the concept would work and could be built given the known con-
straints. It’s about using the known laws of interaction design to guide design
choices, and about putting in the right affordances and feedback so that users
can create the right mental model of the product in order to properly use it.

Of course, right now, these are just documents; they don’t live and breathe
and you cannot really “interact” with them. For that, prototyping is neces-

sary, and that is what the next chapter covers.

For Further Reading

About Face 3: The Essentials of Interaction Design, Alan Cooper, Robert Rei-

mann, and David Cronin

The Design of Everyday Things, Donald A. Norman

> i i iiiiah

Figure 7.15
The "Wooden Mirror”
creates the image of

what is in front of it
(seen by a camera)
by flipping wooden
blocks within its
frame.

COURTESY DANIEL ROZIN

CHAPTER7 REFINEMENT

Designing for the Digital Age: How to Create Human-Centered Products and

Services, Kim Goodwin
Designing Interfaces: Patterns for Effective Interaction Design, Jenifer Tidwell

Designing Gestural Interfaces, Dan Saffer

Designing Web Interfaces: Principles and Patterns for Rich Interactions, Bill
Scott and Theresa Neil

\
\\

Mobile Interaction Design, Matt Jones and Gary Marsden

° ° X :
\ 5 ! X X \
Communicating Design: Developing Web Site Documentation for Design and P r O t O t y p I n g ’ I e St I ng \ X

Planning, Dan Brown

Designing the Obvious: A Common Sense Approach to Web Application

Design, Robert Hoekman Jr. | an d D eve | (0] p men t |

Information Architecture for the World Wide Web: Designing Large-Scale
Web Sites, Louis Rosenfeld and Peter Morville ; ‘ \ 3

Ambient Findability: What We Find Changes Who We Become, Peter Morville

Content Strategy for the Web, Kristina Halvorson

